Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EClinicalMedicine ; 58:101874-101874, 2023.
Article in English | EuropePMC | ID: covidwho-2262611

ABSTRACT

Background Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity. Methods We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18–69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5–9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue. Findings Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness. Interpretation Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications. Funding 10.13039/501100001659Deutsche Forschungsgemeinschaft (DFG) and German Ministry of Education and Research (BMBF).

2.
EClinicalMedicine ; 58: 101874, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2262612

ABSTRACT

Background: Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity. Methods: We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18-69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5-9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue. Findings: Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness. Interpretation: Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications. Funding: Deutsche Forschungsgemeinschaft (DFG) and German Ministry of Education and Research (BMBF).

3.
Brain Behav Immun ; 109: 139-143, 2023 03.
Article in English | MEDLINE | ID: covidwho-2176734

ABSTRACT

BACKGROUND: Neurological symptoms, in particular cognitive deficits, are common in post-COVID-19 syndrome (PCS). There is no approved therapy available, and the underlying disease mechanisms are largely unknown. Besides others, autoimmune processes may play a key role. DESIGN: We here present data of a prospective study conducted between September 2020 and December 2021 and performed at two German University hospitals with specialized Neurology outpatient clinics. Fifty patients with self-reported cognitive deficits as main complaint of PCS and available serum and CSF samples were included. Cell-based assays and indirect immunofluorescence on murine brain sections were used to detect autoantibodies against intracellular and surface antigens in serum and CSF and analyzed for associations with cognitive screening assessment. RESULTS: Clearly abnormal cognitive status (MoCA ≤ 25/30 points) was only seen in 18/50 patients with self-reported cognitive deficits. Most patients (46/50) had normal routine CSF parameters. anti-neuronal autoantibodies were found in 52 % of all patients: n = 9 in serum only, n = 3 in CSF only and n = 14 in both, including those against myelin, Yo, Ma2/Ta, GAD65 and NMDA receptor, but also a variety of undetermined epitopes on brain sections. These included cerebral vessel endothelium, Purkinje neurons, granule cells, axon initial segments, astrocytic proteins and neuropil of basal ganglia or hippocampus as well as a formerly unknown perinuclear rim pattern. Pathological MoCA results were associated with the presence of anti-neuronal antibodies in CSF (p = 0.0004). CONCLUSIONS: Autoantibodies targeting brain epitopes are common in PCS patients and strongly associate with pathological cognitive screening tests, in particular when found in CSF. Several underlying autoantigens still await experimental identification. Further research is needed to inform on the clinical relevance of these autoantibodies, including controlled studies that explore the potential efficacy of antibody-depleting immunotherapy in PCS.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Mice , Animals , Autoantibodies , Post-Acute COVID-19 Syndrome , Prospective Studies , Brain
4.
EBioMedicine ; 83: 104211, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1977203

ABSTRACT

BACKGROUND: Understanding how SARS-CoV-2 affects respiratory centres in the brainstem may help to preclude assisted ventilation for patients in intensive care setting. Viral invasion appears unlikely, although autoimmunity has been implicated, the responsible antigens remain unknown. We previously predicted the involvement of three epitopes within distinct brainstem proteins: disabled homolog 1 (DAB1), apoptosis-inducing-factor-1 (AIFM1), and surfeit-locus-protein-1 (SURF1). METHODS: Here, we used microarrays to screen serum from COVID-19 patients admitted to intensive care and compared those with controls who experienced mild course of the disease. FINDINGS: The results confirm the occurrence of IgG and IgM antibodies against the hypothesised epitopes in COVID-19 patients. Importantly, while IgM levels were similar in both groups, IgG levels were significantly elevated in severely ill patients compared to controls, suggesting a pathogenic role of IgG. INTERPRETATION: The newly discovered anti-neuronal antibodies might be promising markers of severe disease and the targeted peptide epitopes might be used for targeted immunomodulation. Further work is needed to determine whether these antibodies may play a role in long-COVID. FUNDING: AF, CF and PR received support from the German Research Foundation (grants FL 379/22-1, 327654276-SFB 1315, FR 4479/1-1, PR 1274/8-1). SH, DR, and DB received support from the Ministry of Economy, State of Mecklenburg Western Pomerania, Germany (grant COVIDPROTECT: "Optimisation of diagnostic and therapeutic pathways for COVID-19 patients in MV"). SH received support from the Research Group Molecular Medicine University of Greifswald (FVMM, seed funding FOVB-2021-01). AV received support from the Else Kröner Fresenius Foundation and the Alzheimer Research Initiative.


Subject(s)
COVID-19 , Antibodies, Viral , Brain Stem , COVID-19/complications , Epitopes , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
5.
Front Neurol ; 12: 738405, 2021.
Article in English | MEDLINE | ID: covidwho-1450827

ABSTRACT

Background and Objectives: Neurological and psychiatric symptoms are frequent in patients with post-COVID-19 syndrome (PCS). Here, we report on the clinical presentation of the first 100 patients who presented to our PCS Neurology outpatient clinic ≥12 weeks after the acute infection with SARS-CoV-2. To date, PCS is only defined by temporal connection to SARS-CoV-2 infection. Identification of clinical phenotypes and subgroups of PCS is urgently needed. Design: We assessed clinical data of our first 100 ambulatory patients regarding clinical presentations; self-questionnaires focusing on daytime sleepiness, mood, and fatigue; and a screening assessment for detecting cognitive impairment. Results: A total of 89% of the patients presenting to the Neurology outpatient clinic had an initially mild course of COVID-19 and had not been hospitalized. The majority of the patients were female (67 vs. 33% male). The most frequent symptom reported was cognitive impairment (72%). There were 30% of patients who reported cognitive deficits and scored below 26 points on the Montreal Cognitive Assessment Scale. Fatigue (67%), headache (36%), and persisting hyposmia (36%) were also frequently reported; 5.5% of all patients showed signs of severe depression. Discussion: To our knowledge, this is the first report of patient data of a PCS Neurology outpatient clinic. Neurological sequelae also exist for more than 3 months after mainly mild SARS-CoV-2 acute infections. The reported symptoms are in accordance with recently published data of hospitalized patients.

SELECTION OF CITATIONS
SEARCH DETAIL